Basic Mathematics | Chapter 1
1.1: The Integers
Lecture
Notes
Positive integers: 1,2,3,4,…
Natural Numbers: 0,1,2,3,…
Origin of the number line is zero.
Negative integers: −1,−2,−3,−4,…
Integers: …,−3,−2,−1,0,1,2,3,…
N1. 0+a=a+0=a
N2. a+(−a)=0and also−a+a=0
−a is the additive inverse of a
1.2. Rules for Addition
Lecture
Notes
Commutativity. a+b=b+a
Associativity. (a+b)+c=a+(b+c)
N3. If a+b=0, then b=−a and a=−b
N4. a=−(−a)
N5. −(a+b)=−a−b
1.3. Rules for Multiplication
Commutativity. ab=ba
Associativity. (ab)c=a(bc)
N6. 1a=aand0a=0
Distributivity. a(b+c)=ab+acand(b+c)a=ba+ca
N7. (−1)a=−a
N8. −(ab)=(−a)b
N9. −(ab)=a(−b)
N10. (−a)(−b)=ab
Exponents exist: an=a1∗a2∗a3∗...∗an
N11. am+n=aman
N12. (am)n=amn
These formulas are used a lot, and should be remembered:
(a+b)2=a2+2ab+b2
(a−b)2=a2−2ab+b2
(a+b)(a−b)=a2−b2
1.4. Even and Odd Integers: Divisibility